Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aerosols in Jupiter’s stratosphere form intriguing polar hoods, which have been investigated by ultraviolet cameras on Cassini and the Hubble Space Telescope. Transient, concentrated dark ovals of unknown origin have been noted within both the northern and southern polar hoods. However, a systematic comparative study of their properties, which could elucidate the physical processes active at the poles, has not yet been performed due to infrequent observations. Using 26 global maps of Jupiter taken by Hubble between 1994 and 2022, we detected transient ultraviolet-dark ovals with a 48% to 53% frequency of occurrence in the south. We found the southern dark oval to be 4 to 6 times more common than its northern counterpart. The southern feature is an anticyclonic vortex and remains within the auroral oval during most of its lifetime. The oval’s darkness is consistent with a 20 to 50 times increase in haze abundance or an overall upward shift in the stratospheric haze distribution. The anticyclonic vorticity of the dark oval is enhanced relative to its surroundings, which represents a deep extension of the higher-altitude vortices previously reported in the thermosphere and upper stratosphere. The haze enhancement is probably driven by magnetospheric momentum exchange, with enhanced aerosols producing the localized heating detected in previous infrared retrievals.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract The global energy budget is pivotal to understanding planetary evolution and climate behaviors. Assessing the energy budget of giant planets, particularly those with large seasonal cycles, however, remains a challenge without long-term observations. Evolution models of Saturn cannot explain its estimated Bond albedo and internal heat flux, mainly because previous estimates were based on limited observations. Here, we analyze the long-term observations recorded by the Cassini spacecraft and find notably higher Bond albedo (0.41 ± 0.02) and internal heat flux (2.84 ± 0.20 Wm−2) values than previous estimates. Furthermore, Saturn’s global energy budget is not in a steady state and exhibits significant dynamical imbalances. The global radiant energy deficit at the top of the atmosphere, indicative of the planetary cooling of Saturn, reveals remarkable seasonal fluctuations with a magnitude of 16.0 ± 4.2%. Further analysis of the energy budget of the upper atmosphere including the internal heat suggests seasonal energy imbalances at both global and hemispheric scales, contributing to the development of giant convective storms on Saturn. Similar seasonal variabilities of planetary cooling and energy imbalance exist in other giant planets within and beyond the Solar System, a prospect currently overlooked in existing evolutional and atmospheric models.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract The Neptune Odyssey mission concept is a Flagship-class orbiter and atmospheric probe to the Neptune–Triton system. This bold mission of exploration would orbit an ice-giant planet to study the planet, its rings, small satellites, space environment, and the planet-sized moon Triton. Triton is a captured dwarf planet from the Kuiper Belt, twin of Pluto, and likely ocean world. Odyssey addresses Neptune system-level science, with equal priorities placed on Neptune, its rings, moons, space environment, and Triton. Between Uranus and Neptune, the latter is unique in providing simultaneous access to both an ice giant and a Kuiper Belt dwarf planet. The spacecraft—in a class equivalent to the NASA/ESA/ASI Cassini spacecraft—would launch by 2031 on a Space Launch System or equivalent launch vehicle and utilize a Jupiter gravity assist for a 12 yr cruise to Neptune and a 4 yr prime orbital mission; alternatively a launch after 2031 would have a 16 yr direct-to-Neptune cruise phase. Our solution provides annual launch opportunities and allows for an easy upgrade to the shorter (12 yr) cruise. Odyssey would orbit Neptune retrograde (prograde with respect to Triton), using the moon's gravity to shape the orbital tour and allow coverage of Triton, Neptune, and the space environment. The atmospheric entry probe would descend in ∼37 minutes to the 10 bar pressure level in Neptune's atmosphere just before Odyssey's orbit-insertion engine burn. Odyssey's mission would end by conducting a Cassini-like “Grand Finale,” passing inside the rings and ultimately taking a final great plunge into Neptune's atmosphere.more » « less
An official website of the United States government
